12,077 research outputs found

    Monte Carlo study of gg->H+jets contribution to Vector Boson Fusion Higgs production at the LHC

    Full text link
    The contribution of gg->H+jets production process to the vector boson fusion production of the Higgs boson, VV->H, at LHC was evaluated with the ALPGEN generator and the PYTHIA shower Monte Carlo including a jet-parton matching procedure. After the experimental like event selections applied at PYTHIA particle level, the contribution was found to be 4-5 % for a Higgs boson mass of 120 GeV

    Viscous Effects in the Inception of Cavitation on Axisymmetric Bodies

    Get PDF
    Cavitation inception and development on two axisymmetric bodies was studied with the aid of a Schlieren flow visualization method developed for that purpose. Both bodies were found to exhibit a laminar boundary layer separation; cavitation inception was observed to occur within this region of separated flow. The incipient cavitation index was found to be closely correlated with the magnitude of the pressure coefficient at the location of flow separation on one of the bodies. There is also experimental evidence that events at the site of turbulent reattachment of the separated flow may also greatly influence cavitation inception

    Recursive image sequence segmentation by hierarchical models

    Get PDF
    This paper addresses the problem of image sequence segmentation. A technique using a sequence model based on compound random fields is presented. This technique is recursive in the sense that frames are processed in the same cadency as they are produced. New regions appearing in the sequence are detected by a morphological procedure.Peer ReviewedPostprint (published version

    Bosonic and fermionic Weinberg-Joos (j,0)+ (0,j) states of arbitrary spins as Lorentz-tensors or tensor-spinors and second order theory

    Full text link
    We propose a general method for the description of arbitrary single spin-j states transforming according to (j,0)+(0,j) carrier spaces of the Lorentz algebra in terms of Lorentz-tensors for bosons, and tensor-spinors for fermions, and by means of second order Lagrangians. The method allows to avoid the cumbersome matrix calculus and higher \partial^{2j} order wave equations inherent to the Weinberg-Joos approach. We start with reducible Lorentz-tensor (tensor-spinor) representation spaces hosting one sole (j,0)+(0,j) irreducible sector and design there a representation reduction algorithm based on one of the Casimir invariants of the Lorentz algebra. This algorithm allows us to separate neatly the pure spin-j sector of interest from the rest, while preserving the separate Lorentz- and Dirac indexes. However, the Lorentz invariants are momentum independent and do not provide wave equations. Genuine wave equations are obtained by conditioning the Lorentz-tensors under consideration to satisfy the Klein-Gordon equation. In so doing, one always ends up with wave equations and associated Lagrangians that are second order in the momenta. Specifically, a spin-3/2 particle transforming as (3/2,0)+ (0,3/2) is comfortably described by a second order Lagrangian in the basis of the totally antisymmetric Lorentz tensor-spinor of second rank, \Psi_[ \mu\nu]. Moreover, the particle is shown to propagate causally within an electromagnetic background. In our study of (3/2,0)+(0,3/2) as part of \Psi_[\mu\nu] we reproduce the electromagnetic multipole moments known from the Weinberg-Joos theory. We also find a Compton differential cross section that satisfies unitarity in forward direction. The suggested tensor calculus presents itself very computer friendly with respect to the symbolic software FeynCalc.Comment: LaTex 34 pages, 1 table, 8 figures. arXiv admin note: text overlap with arXiv:1312.581
    • …
    corecore